File: //opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/__pycache__/scimath.cpython-37.pyc
B
��Fd7 � @ s� d Z ddlmZmZmZ ddlm mZ ddl m m
Z ddlmZm
Z
ddlmZ dddd d
ddd
dg Ze�d�Zdd� Zdd� Zdd� Zdd� Zdd� Zdd� Zdd
� Zdd � Zdd� Zdd� Zdd� Zdd
� Zd d� ZdS )!aD
Wrapper functions to more user-friendly calling of certain math functions
whose output data-type is different than the input data-type in certain
domains of the input.
For example, for functions like `log` with branch cuts, the versions in this
module provide the mathematically valid answers in the complex plane::
>>> import math
>>> from numpy.lib import scimath
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
True
Similarly, `sqrt`, other base logarithms, `power` and trig functions are
correctly handled. See their respective docstrings for specific examples.
� )�division�absolute_import�print_functionN)�asarray�any)�isreal�sqrt�log�log2�logn�log10�power�arccos�arcsin�arctanhg @c C sB t | jjtjtjtjtjtjtj f�r2| �
tj �S | �
tj�S dS )ah Convert its input `arr` to a complex array.
The input is returned as a complex array of the smallest type that will fit
the original data: types like single, byte, short, etc. become csingle,
while others become cdouble.
A copy of the input is always made.
Parameters
----------
arr : array
Returns
-------
array
An array with the same input data as the input but in complex form.
Examples
--------
First, consider an input of type short:
>>> a = np.array([1,2,3],np.short)
>>> ac = np.lib.scimath._tocomplex(a); ac
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> ac.dtype
dtype('complex64')
If the input is of type double, the output is correspondingly of the
complex double type as well:
>>> b = np.array([1,2,3],np.double)
>>> bc = np.lib.scimath._tocomplex(b); bc
array([ 1.+0.j, 2.+0.j, 3.+0.j])
>>> bc.dtype
dtype('complex128')
Note that even if the input was complex to begin with, a copy is still
made, since the astype() method always copies:
>>> c = np.array([1,2,3],np.csingle)
>>> cc = np.lib.scimath._tocomplex(c); cc
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> c *= 2; c
array([ 2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
>>> cc
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
N)�
issubclassZdtype�type�ntZsingle�byte�short�ubyte�ushortZcsingle�astype�cdouble)Zarr� r �D/opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/scimath.py�
_tocomplex# s 8r c C s( t | �} tt| �| dk @ �r$t| �} | S )a� Convert `x` to complex if it has real, negative components.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> np.lib.scimath._fix_real_lt_zero([1,2])
array([1, 2])
>>> np.lib.scimath._fix_real_lt_zero([-1,2])
array([-1.+0.j, 2.+0.j])
r )r r r r )�xr r r �_fix_real_lt_zeroa s r c C s( t | �} tt| �| dk @ �r$| d } | S )a� Convert `x` to double if it has real, negative components.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> np.lib.scimath._fix_int_lt_zero([1,2])
array([1, 2])
>>> np.lib.scimath._fix_int_lt_zero([-1,2])
array([-1., 2.])
r g �?)r r r )r r r r �_fix_int_lt_zero| s r c C s, t | �} tt| �t| �dk@ �r(t| �} | S )a� Convert `x` to complex if it has real components x_i with abs(x_i)>1.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> np.lib.scimath._fix_real_abs_gt_1([0,1])
array([0, 1])
>>> np.lib.scimath._fix_real_abs_gt_1([0,2])
array([ 0.+0.j, 2.+0.j])
� )r r r �absr )r r r r �_fix_real_abs_gt_1� s r"